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Abstract: This paper presents new results in implementation of parallel computing in modeling
of fractional-order state-space systems. The methods considered in the paper are based on the
Euler fixed-step discretization scheme and the Grünwald-Letnikov definition of the fractional-order
derivative. Two different parallelization approaches for modeling of fractional-order state-space
systems are proposed, which are implemented both in Central Processing Unit (CPU)- and Graphical
Processing Unit (GPU)-based hardware environments. Simulation examples show high efficiency
of the introduced parallelization schemes. Execution times of the introduced methodology are
significantly lower than for the classical, commonly used simulation environment.
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1. Introduction

Fractional-order systems incorporating fractional-order derivatives (or differences) have attracted
considerable research interest as their specific nature can be more adequate to describe some complex
physical phenomena [1–13]. Since the fractional-order derivative is not defined at a point as in the
case of its integer-order counterpart, impulse responses of fractional-order systems are not, in general,
a class of exponential functions. In addition, a fractional-order derivative affects the properties of
the system in the frequency domain. This is due to the fact that the modulus characteristic of a
derivative of the fractional order α is increased by 20α dB per decade instead of 20 dB per decade for
the integer-order derivative, whereas the phase characteristic is equal to πα/2. Therefore, the dynamic
properties of the fractional-order system are more adjustable than for integer-order systems and can
be more accurate in modeling various physical processes involving electrical circuits [4,6], thermal
and diffusion processes [14,15], medicine [8,16], and others [17–20]. Among them, a lot of interest
has been devoted to fractional-order generalizations of various entropy definitions and functions,
i.e., Rényi entropy [11,21], Tsallis entropy [11,22], etc. The fractional generalizations of entropy
definitions have led to different probability distribution functions as compared with the Shannon
entropies [5]. However, the main problem encountered in the fractional-order systems is the fact that
calculation of fractional-order derivative/difference may lead to computational problems. Namely,
the Grünwald-Letnikov (GL) fractional-order derivative/difference, which is considered here, may lead
to computational explosion related to the infinite summation. That is why truncated or finite-length
implementation is used in approximators to the fractional-order derivative/difference [3,10]. Still,
high modeling accuracy requirements often end up with high (upper) summation limits, which may
be computationally burdensome for a single-core application. In spite of this, there is little discussion
about using the multi-core architectures in calculations of fractional-order derivatives/differences.
Therefore, the fractional-oriented parallel implementation issue is the main motivation for this paper.
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Recently, trends in the development of more powerful computing hardware have focused on
increased numbers of cores rather than the increased performance of an individual unit. For this reason,
parallel computing has emerged as a research domain with the capability of meeting time requirements
in both real-time applications and offline simulations. Despite the increased difficulty of coding,
parallel programming has become very popular due to the ever-growing computational scale [23,24].

There are some papers considering the parallelization process for the fractional-order
derivative/difference and fractional-order systems. In [25], a parallel computing application has
been proposed for calculation of the Caputo derivative by use of the Adams–Bashforth–Moulton
method. That method is extended to modeling of the fractional-order state-space system in [26].
Another approach for solving the Caputo derivative problem in the specific fractional-diffusion
equation has been presented in [27], with a parallel algorithm based on linear tridiagonal equations.
Yet another example is the use of parallel computing for solving nonlinear time-space fractional partial
differential equations [28]. In that case, the authors have studied the efficiency of parallelizations for
shared and distributed memory systems.

In this work, we use two strategies for parallel calculation of fractional-order state-space systems,
the Grünwald-Letnikov derivative and the fixed-step discretization scheme. The first one is the
use of a Central Processing Unit (CPU) with OpenMP (OMP) Application Programming Interface
(API) [29]. The second one incorporates a Graphical Processing Unit (GPU) with Compute Unified
Device Architecture (CUDA) API.

OMP is a set of compiler directives, library routines, and environment variables enabling
shared-memory parallelism. With minimum latency, each thread or process can have direct access to
memory throughout the system. It can be used to develop applications in programming languages C,
C++, and Fortran on many platforms including Solaris, AIX, HP-UX, Linux, macOS, and Windows.
OMP is supported by major computer hardware and software vendors, and is characterized by
high-level parallelism, portability, scalability, and simplicity of use.

CUDA is an API developed by Nvidia Corporation. The CUDA platform (Nvidia Corporation,
Santa Clara, CA, USA) is a software layer that provides a dramatic increase in computing performance
by using the power of CUDA-enabled GPUs. It is designed to work with programming languages
such as C, C++, and Fortran. In contrast to APIs like Direct3D and OpenGL, which require advanced
skills in graphics programming, CUDA makes it easier for specialists to use GPU resources by use of
virtual instruction set and parallel computational elements. It also supports programming frameworks
such as OpenACC and OpenCL.

The paper is organized as follows. Having introduced the problem in Section 1, representations
of the fractional-order derivative/difference and the fractional-order state-space system are presented
in Section 2. Section 3 gives an introduction to the different parallel architectures that are considered in
this paper. The detailed description, pseudo-code, and implementation method for the used parallel
algorithms are also presented in Section 3. Simulation examples of Section 4 provide a comparative
analysis of the introduced algorithm approaches as well as presented architectures. The analysis is
accomplished in terms of high modeling accuracy and high time efficiency. Conclusions in Section 5
complete the paper.

2. Preliminaries

Consider a continuous-time linear time-invariant (LTI) state-space fractional-order system
described by the following equations:

Dαx(t) =Ax(t) + Bu(t),

y(t) =Cx(t) + Du(t),
(1)

where A ∈ <n×n, B ∈ <n×nu , C ∈ <ny×n, and D ∈ <ny×nu are the system matrices; nu and ny are the
number of inputs and outputs, respectively; t is the continuous time; and Dα = diag{Dα1 , . . . , Dαn}
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is the matrix Dα ∈ <n×n consisting of a fractional-order derivative Dαi of order αi , i = 1, . . . , n.
The system (1) is commonly considered in a simplified commensurate fractional-order form, where
the fractional-order α = αi, i = 1, 2, . . . , n. In this case, Dα ∈ < denotes a fractional-order derivative
of order α. The fractional-order state-space system (1) is one of the most popular methods used to
describe fractional-order processes. By using Equation (1), we can present fractional-order differential
equations in a simple, matrix/vector form. Therefore, we can find many uses of the state-space
system (1) in practical applications, e.g., in electrical circuits [4,6], in modeling of thermal and diffusion
processes [12,13,15], in medicine [8,16], etc.

The fractional-order derivative is often described by using one of three definitions, that is, the
Riemman-Liouville (RL), Caputo, or Grünwald-Letnikov (GL) definitions. Regarding the practical
implementation point of view, in this paper, we use the Grünwald-Letnikov derivative defined as

Dαx(t)|t=kh = lim
h→0

1
hα

∞

∑
j=0

(−1)j Γ(α + 1)
j! Γ(α− n + 1)

x(t− jh), (2)

= lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
x(t− jh), (3)

where α ∈ (0, 2), h is the sampling period, Γ(.) denotes the Gamma function and (α
j), j = 1, 2, . . .,

are the Newton binomial coefficients. Taking into account poor numerical feasibility of the Gamma
function, we use the definition as in Equation (3). The GL definition is equivalent to the RL definition
discretized by the use of the fixed-step discretization scheme. Additionally, in the case of homogenous
initial value, the GL is equivalent to the Caputo definition. Moreover, by using specific correction
coefficients, we can easily calculate the Caputo derivative by the use of the extended GL definition [30].
Therefore, the GL derivative based on finite length implementation can be used as the approximation
of the Riemann–Liouville and Caputo derivatives. The main advantages of the GL definition are (1)
they can be easily calculated in the recursive way, by using robust and numerically stable algorithms;
and (2) an error of the finite-length GL approximation can be easily calculated, both for fractional-order
difference/derivative and for the whole fractional-order system [31]. The main disadvantage of the
finite-length GL is a low convergence rate. A detailed analysis of the effectiveness of finite-length GL as
compared to other approximation methods can be found in [32]. In the literature, we can find several
other definitions of fractional-order derivatives/differences [15,18,32]. In particular, He’s derivative
is shown to provide a good numerical performance in specific applications [12,15]. Analysis of the
state-space system using this definition will be a topic of our further work.

In order to solve the system (1) incorporating the GL derivative (3), a typical way is to use
the simple fixed-step Euler method for calculation of fractional-order equation. Assuming that
x(l) = 0 ∀ l ≤ 0, we obtain

Dαx(t)|t=kh ≈
1
hα

k

∑
j=0

(−1)j
(

α

j

)
x(t− jh), (4)

or using a discrete-time formulation for k = 0, 1, . . .

Dαx(t)|t=kh ≈
∆αxk

hα
, (5)

where xk is the state vector defined in discrete time k and ∆αxk denotes the discrete-time
fractional difference

∆αxk =
k

∑
j=0

Pj(α)xkq−j = xk +
k

∑
j=1

Pj(α)xkq−j k = 0, 1, . . . (6)
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with α ∈ (0,2), q−1 being the backward shift operator and

Pj(α) = (−1)j
(

α

j

)
. (7)

Note that the Newton binomials can be calculated by use of the simple, well-known formula

(
α

j

)
=

{
1 j = 0
α(α−1)...(α−j+1)

j! j > 0.
(8)

Usually, in the fractional-order state-space systems, we use a forward-shifted form of the
fractional-order difference (see e.g., [7]).

∆αxk+1 = Ahαxk + Bhαuk. (9)

yk = Cxk + Duk. (10)

Combining Equations (6) and (9), we obtain the formula for calculating a fractional-order
discrete-time state equation:

xk+1 = (Ahα + αI)xk −
k+1

∑
j=2

Pj(α)xk−j+1 + Bhαuk. (11)

Note that each incoming sample of the signal xk increases the complexity of both the
fractional-order difference (Equation (11)) and the whole fractional-order system (Equations (9)
and (10)). This leads to the computational explosion for k → ∞. To avoid this, a finite-length
version of the fractional-order difference is used (see e.g., [7,10,33])

∆α
Lxk = xk +

L

∑
j=1

Pj(α)xk−j k = 0, 1, . . . , (12)

where L is the upper bound for j.
Now, combining Equations (9) and (12), we obtain the finite-length formula for calculation of the

state equation

xk+1 = (Ahα + αI)xk −
L

∑
j=2

Pj(α)xk−j+1 + Bhαuk. (13)

It is important to note that the results presented in Equations (12) and (13) for k > L define the
approximations of the fractional-order difference and fractional-order state-equation, respectively.
Problem formulation: It is important that convergence of the series Pj(α) depends on the order α and
is quite slow, in particular for a low value of α. Therefore, accurate approximation of Equation (5),
and consequently Equation (12), requires a very high implementation length L. Exemplary norm
H(α, L) = ||∆α

L1(t)− ∆α1(t)||L∞ , where 1(t) is the Heaviside step function, is H(0.5, 3180) = 0.01,
but to obtain the similar accuracy for α = 0.3 we need as high a length as L = 2,000,000 (i.e., h(0.3,
2,000,000) = 0.01). Moreover, implementation of the fractional-order difference into the state-space
system may require much higher L to obtain the same accuracy [31]. Therefore, real-time applications
of both fractional-order difference and fractional-order state-space system for “fast” systems (with
small sampling periods h) may require realization of the parallelization scheme for the calculation
process.
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3. Parallel Algorithms

Firstly, we introduce a parallel method for calculating the fractional-order difference. In the next
step, the method is extended to the calculation of the fractional-order state-space system. Finally, a new
hierarchical parallelization scheme for the calculation of the fractional-order system is proposed. It is
important to note that the fractional-order difference incorporated into the fractional-order system
leads to computational complication of the state equation only. The calculation of this equation, as is
presented in the previous section, constitutes a computational burden process. In contrast, the output
equation of the fractional-order system is the same as for the integer-order case and is based on simple
vector/matrix operations. Therefore, we consider the calculation of the state equation only.

3.1. Fractional-Order Difference

Consider the fractional-order difference of Equation (12). In order to implement the parallelization
scheme, we have to divide the summation process into N independent parts

∆α
Lxk = xk +

N

∑
i=1

 biL/Nc

∑
j=b(i−1)L/Nc+1

Pj(α)xk−j

 , (14)

= xk +
N

∑
i=1

Φi, (15)

where N is the number of parts/workers, b.c denotes the floor function, and

Φi =
biL/Nc

∑
j=b(i−1)L/Nc+1

Pj(α)xk−j = PiXT
i (16)

with Pi = [Pb(i−1)L/Nc+1(α), . . . , PbiL/Nc(α)], and XT
i = [xk−b(i−1)L/Nc−1, . . . ,

xk−biL/Nc], i = 1, . . . , N. Now, in the parallelization process we delegate calculation of elements Φi
on particular workers. Finally, a block diagram of the calculation process for the fractional-order
difference is presented in Figure 1 and the calculation algorithm is presented as Algorithm 1.

Send 
Indices

Idle
Worker 1 Worker 2 Worker NWorker 3

Figure 1. Block diagram of the calculation process.



Entropy 2019, 21, 931 6 of 16

Algorithm 1: Parallel algorithm for one-step computation of fractional-order difference.
Data: Input data: L; N; k; xk−j and Pj(α), j = 1, . . . , L.
if L > k then

L← k;
end
if N > L then

N ← L;
end
Parallel loop for i→ 1 to N do

compute Φi by use of Equation (16);
end
compute ∆α

Lxk by use of Equation (15);

Remark 1. Note that Equation (12) can be considered as both a) finite implementation of the fractional-order
difference when L < t and b) a fractional-order difference when L = t. Consequently, Algorithm 1 represents a
parallel implementation for both cases.

Remark 2. The number of workers N used in Algorithm 1 is bounded by the following condition N ≤
min(L, k). In addition, from a feasibility point of view, the number of workers N should be less than physical
cores in the hardware environment.

The calculation process of Figure 1 is a master/slave approach, with a master process (Worker 0)
and N slave processes (Workers 1, . . . , N). A similar approach for the Caputo-based fractional-order
state-space system is presented in [26].

3.2. Fractional-Order System

The parallelization algorithm presented in the previous subsection can be immediately applied to
the fractional-order state-space system. In this case, one-step calculation process is as follows:

xk+1 = (Ahα + αI)xk + Bhαuk −
N

∑
i=1

 bi(L−1)/Nc

∑
j=b(i−1)(L−1)/Nc+1

Pj+1(α)xk−j

 ,

(17)

= (Ahα + αI)xk + Bhαuk −
N

∑
i=1

Φi, (18)

where

Φi =
bi(L−1)/Nc

∑
j=b(i−1)(L−1)/Nc+1

Pj+1(α)xk−j = PiXT
i (19)

with Pi = [Pb(i−1)(L−1)/Nc+2(α), . . . , Pbi(L−1)/Nc+1(α)], and
XT

i = [xk−b(i−1)(L−1)/Nc, . . . , xk−bi(L−1)/Nc], where Pi ∈ <1×bi(L−1)/Nc−b(i−1)(L−1)/Nc and
Xi ∈ <bi(L−1)/Nc−b(i−1)(L−1)/Nc×n. Note that each row of the vector Φi is quite similar to those of
Equation (16), the difference being only the single forward time shift. Note that, in this case, particular
workers calculate Φi, i = 1, . . . , N, and the master worker calculates the next step of system states
(Equation (18)) and the output signal on the basis of Equation (1). The parallelization process for the
above scheme is presented in Algorithm 2. As in Algorithm 1, the number of workers N used in
Algorithm 2 is bounded by the condition given in Remark 2.

Furthermore, we can calculate the next values of state vector xk+1 on the basis of the
following equations:
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Algorithm 2: Parallel algorithm for one-step calculation of fractional-order system.
Data: Input: L; N; k; {A, B, C, D} xk−j and Pj(α), j = 1, . . . , L.
if L > k + 1 then

L← k + 1;
end
if N > L− 1 then

N ← L− 1;
end
Parallel loop for i→ 1 to N do

generate Pi and XT
i as in Equation (19);

compute Φi by use of Equation (19);
end
compute state vector xk+1 by use of Equation (18);
compute system output by use of Equation (1);

xk+1 = P̃X̃k, (20)

where

P̃ =
[
Aα, P̃2(α), . . . , P̃L(α), Bhα

]
, (21)

X̃k =
[

xT
k , xT

k−1, . . . , xT
k−L, uT

k

]T
(22)

with Aα = A− Iα, P̃j(α) = IPj(α), j = 2, . . . , L. The sizes of matrices are as follows: P̃ ∈ <n×nL+nu

and X̃k ∈ <1×nL+nu . In the case of modeling the noncommensurate-order system, we can still use
Equation (20), where the elements P̃j(α), j = 2, . . . , L are substituted by P̃j = diag{Pj(α1), . . . , Pj(αn)}.

Note that Equation (20) is a simple matrix form of the state equation, but the dimensions of the
matrix P̃ and vector X̃k are large. Therefore, using Equation (20) is not effective from the computational
complexity point of view. Taking into account that P̃ is the sparse matrix, we can present Equation (20)
in a more computationally effective form as

xk+1 =


x1

k+1
...

xn
k+1

 =

 Φ1
k

...
Φn

k

 , (23)

where Φi
k = P̃iX̃i

k and

P̃i =
[
aα

i,1, ..., aα
i,n, P2(α), ..., PL(α), bi,1, . . . , bi,nu

]
, (24)

X̃i
k =

[
xT

k , xi
k−1, . . . , xi

k−L, uT
k

]T
(25)

with i = 1, . . . , n, aα
i,j, j = 1, . . . , n are the entries in the i-th row of the matrix Aα and bi,j are the

elements in i-th row of the matrix B, respectively. Now, we can apply the parallelization algorithm to
Equation (23) and calculate Φi

k in various processes. Moreover, we can implement the parallelization
scheme to calculate particular Φi

k, i = 1, . . . , n, as follows

Φi
k =

M

∑
j=1

Φi,j
k , (26)
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where

Φi,j
k =

bj n+L+nu
M c

∑
m=b(j−1) n+L+nu

M c+1

p̃i,m x̃i,m
k (27)

with p̃i,m and x̃i,m
k , m = 1, . . . , n + L + nu being the m-th elements of the vectors P̃i and X̃i

k, respectively.
As a result of the parallelization scheme for Equations (23)–(27), we obtain a kind of a hierarchical
parallelization process. Firstly, the calculation for time step k is divided into n parts, computing
Φi

k, i = 1, . . . , n. Then, the calculation of each Φi
k is distributed on M subtasks, calculating Φi,j

k ,
j = 1, . . . , M. The block diagram of the hierarchical parallelization scheme is presented in Figure 2 and
the pseudo-code is presented in Algorithm 3.

Figure 2. Block diagram of the hierarchical parallelization scheme.

Algorithm 3: Hierarchical parallel algorithm for one-step calculation of fractional-order system.
Data: Input data: L; M; k; {A, B, C, D} xk−j and Pj(α), j = 1, . . . , L.
if k < L then

L← k;
end
if k < M then

M← L;
end
Parallel loop for i→ 1 to n do

Parallel loop for j→ 1 to M do
compute Φi,j

k by use of Equation (27);
end
compute Φi

k by use of Equation (26);
end
generate state vector xk+1 as in Equation (23);
compute system output by use of Equation (1);

Finally, in the hierarchical parallelization algorithm presented above, to calculate state vector
xk+1, we use (M + 1)× n + 1 workers.

Remark 3. The number M used in Algorithm 3 has to fulfill the following condition: M ≤ min(L, k).
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The parallelization methods for the fractional-order difference in Equation (14) and for the
fractional-order system in Equation (17) can be used for a wide spectrum of multi-core processors.
On the other hand, the hierarchical parallelization method presented in Figure 2 requires a relatively
high number of cores, therefore, the method is recommended in case of using Massively Parallel
Processors (MPP).

4. Simulation Examples

In this section, we present the implementation results of parallelization methods both for the
fractional-order difference and the fractional-order state-space system. For analysis, the CPU- and
GPU-based hardware environments have been used.

In simulation experiments, we consider the fractional-order state-space system {A, B, C, D}
as follows:

A =



−3.6557 −8.5928 −8.9663 −5.2783 −1.6870 −0.2600 −0.0171 −0.0012
1 0.8 0 0 0 0 0 0
0 1 0.8 0 0 0 0 0
0 0 1 0.8 0 0 0 0
0 0 0 1 0.8 0 0 0
0 0 0 0 1 0.8 0 0
0 0 0 0 0 1 0.8 0
0 0 0 0 0 0 1 0.8


,

B =
[
0 0 0 1 0 1 0 0

]T
, C =

[
0 −1 0 0 1 0 0 0

]
, D =

[
0
]

,

α = 0.7

with both the fractional-order difference and fractional-order system excited by the Heaviside step
function u(t) = 1(t).

4.1. CPU-Based Hardware

In case of calculation on the CPU-based hardware, numerical simulations are carried out on a
computing node equipped with the Ubuntu 14.04 (Canonical Ltd., London, UK) operating system
and an Intel Xeon E5−2650 v3 CPU (Intel Corporation, Santa Clara, CA, USA) with a basic frequency
of 2.3 GHz. The hardware system offers 10 physical cores (20 threads based on the hyperthreading
technology). During the simulations, we use one thread per physical core only, since the hyperthreading
technology is not suitable in our task (see [34,35]). All the calculation algorithms in this subsection
are implemented by use of the C++ programming language and the OMP library. The OMP library is
based on the shared memory concept, therefore, explicit data distribution techniques are not desirable
in this case. For evaluation of parallelization efficiency, solely the simulation times have been taken
into consideration because all the methods provide the same calculation results.

Example 4. Consider fractional-order difference (12) with α = 0.7. The difference is implemented by use of the
parallelization Algorithm 1. The simulation times for various implementation lengths L = [216, 217, 218, 219]

and various numbers of cores N = [1, 2, 4, 8] are presented in Figures 3–6.
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Figure 3. Execution times for fractional-order difference with implementation length L = 216.

Figure 4. Execution times for fractional-order difference with implementation length L = 217.
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Figure 5. Execution times for fractional-order difference with implementation length L = 218.

Figure 6. Execution times for fractional-order difference with implementation length L = 219.

As we can see in Figures 3–6, the parallelization process decreases execution times of the one-step calculation
process for fractional-order difference. The speedup for 8 cores varies from S = 4.17 for L = 219 to S = 4.58 for
L = 216. So, the acceleration is similar for the considered lengths.

Example 5. Consider the fractional-order state-space system presented in the introduction of Section 4.
The system is calculated by the parallel scheme introduced in Algorithm 2. The calculation process is executed in
CPU-based hardware for implementation lengths L = [214, 215, 216, 217]. Results in terms of execution times for
number of cores N = [1, 2, 4, 8] are presented in Figures 7–10.
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Figure 7. Execution times for fractional-order state-space system with implementation length L = 214.

Figure 8. Execution times for fractional-order state-space system with implementation length L = 215.
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Figure 9. Execution times for fractional-order state-space system with implementation length L = 216.

Figure 10. Execution times for fractional-order state-space system with implementation length L = 217.

We can see from Figures 7–10 that, again, the parallelization process decreases execution times of the
one-step calculation process for the fractional-order system. The speedup for 8 cores in this case varies from
S = 3.65 for L = 217 to S = 3.84 for L = 214. This means, again, that the effectiveness of the parallelization is
similar for the considered lengths.

We compared results obtained by the introduced methodology with time effectiveness of model
implementation in the Matlab environment. In the case of using a single-core method, we obtain times from
1.0× 10−3 for L = 214 to 5.4× 10−3 for L = 218, therefore, the times are significantly higher than in the case
where the OpenMP environment is used. Moreover, the implementation of parallel computing by the use of



Entropy 2019, 21, 931 14 of 16

Parallel Computing Toolbox increases calculation times compared to a single-core approach. This is a result of
the specific construction of CPU-based parallelization methods in the Matlab environment.

4.2. GPU-Based Hardware

In the case of GPU-based implementation, we use hardware with two Tesla K80 (Nvidia
Corporation, Santa Clara, CA, USA) accelerators with a dual-GPU design that consists of 4992 Nvidia
CUDA threads, 24GB of GDDR5 memory, 480GB/s aggregate memory bandwidth, and up to 2.91
teraflops of double-precision operations. Accelerators operate on a computing node equipped with
the operating system Windows Server 2012 R2 (Microsoft Corporation, Redmond, WA, USA) and an
Intel Xeon E5− 2683 v3 CPU (Intel Corporation, Santa Clara, CA, USA) with a basic frequency of
2.0 GHz. In contrast to OMP, CUDA does not support globally shared memory, so data distribution
and memory allocation must be performed manually by proper data transfers between all processing
units. CUDA enables the overlapping of some operations without losing much performance, but still,
improper management of data distribution can result in poor time results. CUDA GPUs have many
parallel processors grouped into Streaming Multiprocessors (SMs), creating a grid of threads arranged
within blocks. Each SM can run multiple concurrent thread blocks. Tesla K80 GPU can support up to
1024 active threads in one working block. To take full advantage of all these threads, the program code
must be executed with multiple thread blocks.

Example 6. Consider the fractional-order state-space system presented in the introduction of this section.
The system is calculated by use of parallelization Algorithm 3. Times of the one-step calculation process for
implementation lengths L = [215, 217] and various numbers of cores are presented in Figure 11. Moreover,
Figure 11 presents data transfer times (red and yellow) and execution times (blue and green).

Figure 11. Calculation times for various numbers of threads.

We can see that in the case of using GPU-based hardware and Algorithm 3, we obtain an effective tool for
the distributed calculation of the fractional-order systems. For instance, increasing the number of processors
16 times (from 256 to 4096) for implementation length L = 217 leads to speedup S = 10.22. In contrast,
for L = 215 in the same case, we obtain S = 4.00. Therefore, the parallelization process is much more effective
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for longer implementations of fractional-order systems. Additionally, we can see that the data transfer times are
longer for high numbers of threads, but are still relatively short compared to the times of calculation.

Again, we compared the effectiveness of the proposed methodology with implicit GPU-support tools in
the Matlab Parallel Computing Toolbox. Finally, we obtain execution times from 1.3× 10−3 for L = 215

to 3.0× 10−3 for L = 217. The times are higher in the case of the use of 256 workers for the hierarchical
parallelization scheme introduced in the paper. Taking into account that Matlab is a high-level environment,
where GPU-support is based on the same CUDA software as we use in our implementation, we can see that the
Matlab parallelization algorithms are visibly less effective than for those considered in the paper.

5. Conclusions

This paper has presented new parallelization algorithms for calculation of both the GL
fractional-order derivative/difference and the fractional-order state-space system. For the
fractional-order system, we introduce two different parallelization methods. The first method is
dedicated to use with classical hardware and relatively low numbers of cores, and the second one is
designed for Massively Parallel Processors. In simulation examples, we use computers with (a) an
Intel Xeon E5− 2650 v3 CPU (Intel Corporation, Santa Clara, CA, USA) and (b) Tesla K80 (Nvidia
Corporation, Santa Clara, CA, USA) accelerators with a dual-GPU. Simulation examples confirm that
the introduced methods can be effectively used in the accurate approximation of the fractional-order
systems, in particular for high calculation lengths. The direction of our future research will be
focused on numerical methods for solving fractional-order systems based on different fractional-order
derivatives/differences, as well as their parallel implementation algorithms.
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